std::ranges::find_last, std::ranges::find_last_if, std::ranges::find_last_if_not
定义于头文件 <algorithm> |
||
调用签名 |
||
(1) | ||
template< std::forward_iterator I, std::sentinel_for<I> S, class T, |
(自 C++23 起) (直到 C++26) |
|
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(自 C++26 起) | |
(2) | ||
template< ranges::forward_range R, class T, |
(自 C++23 起) (直到 C++26) |
|
template< ranges::forward_range R, class Proj = std::identity, |
(自 C++26 起) | |
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(3) | (自 C++23 起) |
template< ranges::forward_range R, class Proj = std::identity, |
(4) | (自 C++23 起) |
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(5) | (自 C++23 起) |
template< ranges::forward_range R, class Proj = std::identity, |
(6) | (自 C++23 起) |
返回范围 [
first,
last)
中满足特定条件的最后一个元素
find_last
搜索等于 value 的元素。find_last_if
搜索范围 [
first,
last)
中谓词 pred 返回 true 的最后一个元素。find_last_if_not
搜索范围 [
first,
last)
中谓词 pred 返回 false 的最后一个元素。此页面上描述的类似函数的实体是算法函数对象(非正式地称为 niebloids),即
内容 |
[编辑] 参数
first, last | - | 定义要检查的元素的范围的迭代器-哨位对 |
r | - | 要检查的元素的范围 |
value | - | 要与之比较元素的数值 |
pred | - | 要应用于投影元素的谓词 |
proj | - | 要应用于元素的投影 |
[编辑] 返回值
[
first,
last)
中 E 为 true 的最后一个迭代器。[编辑] 复杂度
最多 last - first 次谓词和投影的应用。
[编辑] 注解
如果 I
建模 bidirectional_iterator
或(更好)random_access_iterator
,则 ranges::find_last
、ranges::find_last_if
、ranges::find_last_if_not
在常见实现上具有更高的效率。
特性测试 宏 | 值 | Std | 特性 |
---|---|---|---|
__cpp_lib_ranges_find_last |
202207L |
(C++23) | ranges::find_last ,ranges::find_last_if ,ranges::find_last_if_not
|
__cpp_lib_algorithm_default_value_type |
202403L |
(C++26) | 算法的列表初始化 (1,2) |
[编辑] 可能的实现
这些实现仅显示当 I 建模 forward_iterator
时使用的较慢的算法。
find_last (1,2) |
---|
struct find_last_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected<I, Proj>, const T*> constexpr ranges::subrange<I> operator()(I first, S last, const T &value, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional<I> found; for (; first != last; ++first) if (std::invoke(proj, *first) == value) found = first; if (!found) return {first, first}; return {*found, std::ranges::next(*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, const T &value, Proj proj = {}) const { return this->operator()(ranges::begin(r), ranges::end(r), value, std::ref(proj)); } }; inline constexpr find_last_fn find_last; |
find_last_if (3,4) |
struct find_last_if_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr ranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional<I> found; for (; first != last; ++first) if (std::invoke(pred, std::invoke(proj, *first))) found = first; if (!found) return {first, first}; return {*found, std::ranges::next(*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr find_last_if_fn find_last_if; |
find_last_if_not (5,6) |
struct find_last_if_not_fn { template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr ranges::subrange<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional<I> found; for (; first != last; ++first) if (!std::invoke(pred, std::invoke(proj, *first))) found = first; if (!found) return {first, first}; return {*found, std::ranges::next(*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return this->operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr find_last_if_not_fn find_last_if_not; |
[编辑] 示例
#include <algorithm> #include <cassert> #include <forward_list> #include <iomanip> #include <iostream> #include <string_view> int main() { namespace ranges = std::ranges; constexpr static auto v = {1, 2, 3, 1, 2, 3, 1, 2}; { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), 3); constexpr auto i2 = ranges::find_last(v, 3); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), -3); constexpr auto i2 = ranges::find_last(v, -3); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } auto abs = [](int x) { return x < 0 ? -x : x; }; { auto pred = [](int x) { return x == 3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == -3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } { auto pred = [](int x) { return x == 1 or x == 2; }; constexpr auto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(ranges::distance(v.begin(), i1.begin()) == 5); static_assert(ranges::distance(v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == 1 or x == 2 or x == 3; }; constexpr auto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } using P = std::pair<std::string_view, int>; std::forward_list<P> list { {"one", 1}, {"two", 2}, {"three", 3}, {"one", 4}, {"two", 5}, {"three", 6}, }; auto cmp_one = [](const std::string_view &s) { return s == "one"; }; // find latest element that satisfy the comparator, and projecting pair::first const auto subrange = ranges::find_last_if(list, cmp_one, &P::first); std::cout << "The found element and the tail after it are:\n"; for (P const& e : subrange) std::cout << '{' << std::quoted(e.first) << ", " << e.second << "} "; std::cout << '\n'; #if __cpp_lib_algorithm_default_value_type const auto i3 = ranges::find_last(list, {"three", 3}); // (2) C++26 #else const auto i3 = ranges::find_last(list, P{"three", 3}); // (2) C++23 #endif assert(i3.begin()->first == "three" && i3.begin()->second == 3); }
输出
The found element and the tail after it are: {"one", 4} {"two", 5} {"three", 6}
[编辑] 参见
(C++20) |
在某个范围内查找元素的最后一个序列 (算法函数对象) |
(C++20)(C++20)(C++20) |
查找满足特定条件的第一个元素 (算法函数对象) |
(C++20) |
搜索元素范围的第一次出现 (算法函数对象) |
(C++20) |
如果一个序列是另一个序列的子序列,则返回 true (算法函数对象) |
(C++20) |
确定元素是否存在于部分有序的范围中 (算法函数对象) |
(C++23)(C++23) |
检查范围是否包含给定元素或子范围 (算法函数对象) |