命名空间
变体
操作

std::ranges::rotate

来自 cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
算法库
受限算法和范围上的算法 (C++20)
受限算法,例如 ranges::copy, ranges::sort, ...
执行策略 (C++17)
排序和相关操作
分区操作
排序操作
二分搜索操作
(在分区范围上)
集合操作(在排序范围上)
合并操作(在排序范围上)
堆操作
最小/最大操作
(C++11)
(C++17)
字典序比较操作
排列操作
C 库
数值操作
未初始化内存上的操作
 
受限算法
此菜单中的所有名称都属于命名空间 std::ranges
非修改序列操作
修改序列操作
分区操作
排序操作
二分搜索操作(在排序范围上)
       
       
集合操作(在排序范围上)
堆操作
最小/最大操作
       
       
排列操作
折叠操作
数值操作
(C++23)            
未初始化存储上的操作
返回值类型
 
定义在头文件 <algorithm>
调用签名
template< std::permutable I, std::sentinel_for<I> S >

constexpr ranges::subrange<I>

    rotate( I first, I middle, S last );
(1) (自 C++20)
template< ranges::forward_range R >

requires std::permutable<ranges::iterator_t<R>>
constexpr ranges::borrowed_subrange_t<R>

    rotate( R&& r, ranges::iterator_t<R> middle );
(2) (自 C++20)
1) 对元素范围执行左旋转。具体来说,ranges::rotate 交换范围 [firstlast) 中的元素,使元素 *middle 成为新范围的第一个元素,而 *(middle - 1) 成为最后一个元素。
如果 [firstlast) 不是有效范围,或 middle 不在 [firstlast) 中,则行为未定义。
2)(1) 相同,但使用 r 作为范围,就好像使用 ranges::begin(r) 作为 firstranges::end(r) 作为 last

此页面上描述的函数式实体是niebloids,即

在实践中,它们可以作为函数对象实现,或使用特殊的编译器扩展实现。

内容

[编辑] 参数

first, last - 要旋转的元素范围
r - 要旋转的元素范围
middle - 指向应该出现在旋转范围开头的元素的迭代器

[编辑] 返回值

{new_first, last},其中new_first 等于 ranges::next(first, ranges::distance(middle, last)),并指定由 first 指示的元素的新位置。

[编辑] 复杂度

最坏情况下线性ranges::distance(first, last) 次交换。

[编辑] 备注

如果 I 模仿 bidirectional_iterator 或(更好)random_access_iterator,那么 ranges::rotate 在常见的实现中效率更高。

实现(例如,MSVC STL)可能在迭代器类型模仿 contiguous_iterator 且交换其值类型既不调用非平凡的特殊成员函数也不调用 ADL 找到的 swap 时启用向量化。

[编辑] 可能的实现

另请参阅 libstdc++MSVC STL 中的实现。

struct rotate_fn
{
    template<std::permutable I, std::sentinel_for<I> S>
    constexpr ranges::subrange<I>
        operator()(I first, I middle, S last) const
    {
        if (first == middle)
        {
            auto last_it = ranges::next(first, last);
            return {last_it, last_it};
        }
        if (middle == last)
            return {std::move(first), std::move(middle)};
 
        if constexpr (std::bidirectional_iterator<I>)
        {
            ranges::reverse(first, middle);
            auto last_it = ranges::next(first, last);
            ranges::reverse(middle, last_it);
 
            if constexpr (std::random_access_iterator<I>)
            {
                ranges::reverse(first, last_it);
                return {first + (last_it - middle), std::move(last_it)};
            }
            else
            {
                auto mid_last = last_it;
                do
                {
                    ranges::iter_swap(first, --mid_last);
                    ++first;
                }
                while (first != middle && mid_last != middle);
                ranges::reverse(first, mid_last);
 
                if (first == middle)
                    return {std::move(mid_last), std::move(last_it)};
                else
                    return {std::move(first), std::move(last_it)};
            }
        }
        else
        { // I is merely a forward_iterator
            auto next_it = middle;
            do
            { // rotate the first cycle
                ranges::iter_swap(first, next_it);
                ++first;
                ++next_it;
                if (first == middle)
                    middle = next_it;
            }
            while (next_it != last);
 
            auto new_first = first;
            while (middle != last)
            { // rotate subsequent cycles
                next_it = middle;
                do
                {
                    ranges::iter_swap(first, next_it);
                    ++first;
                    ++next_it;
                    if (first == middle)
                        middle = next_it;
                }
                while (next_it != last);
            }
 
            return {std::move(new_first), std::move(middle)};
        }
    }
 
    template<ranges::forward_range R>
    requires std::permutable<ranges::iterator_t<R>>
    constexpr ranges::borrowed_subrange_t<R>
        operator()(R&& r, ranges::iterator_t<R> middle) const
    {
        return (*this)(ranges::begin(r), std::move(middle), ranges::end(r));
    }
};
 
inline constexpr rotate_fn rotate {};

[编辑] 示例

ranges::rotate 是许多算法中常见的构建块。本示例演示了 插入排序

#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
 
int main()
{
    std::string s(16, ' ');
 
    for (int k {}; k != 5; ++k)
    {
        std::iota(s.begin(), s.end(), 'A');
        std::ranges::rotate(s, s.begin() + k);
        std::cout << "Rotate left (" << k << "): " << s << '\n';
    }
    std::cout << '\n';
 
    for (int k {}; k != 5; ++k)
    {
        std::iota(s.begin(), s.end(), 'A');
        std::ranges::rotate(s, s.end() - k);
        std::cout << "Rotate right (" << k << "): " << s << '\n';
    }
 
    std::cout << "\nInsertion sort using `rotate`, step-by-step:\n";
 
    s = {'2', '4', '2', '0', '5', '9', '7', '3', '7', '1'};
 
    for (auto i = s.begin(); i != s.end(); ++i)
    {
        std::cout << "i = " << std::ranges::distance(s.begin(), i) << ": ";
        std::ranges::rotate(std::ranges::upper_bound(s.begin(), i, *i), i, i + 1);
        std::cout << s << '\n';
    }
    std::cout << (std::ranges::is_sorted(s) ? "Sorted!" : "Not sorted.") << '\n';
}

输出

Rotate left (0): ABCDEFGHIJKLMNOP
Rotate left (1): BCDEFGHIJKLMNOPA
Rotate left (2): CDEFGHIJKLMNOPAB
Rotate left (3): DEFGHIJKLMNOPABC
Rotate left (4): EFGHIJKLMNOPABCD
 
Rotate right (0): ABCDEFGHIJKLMNOP
Rotate right (1): PABCDEFGHIJKLMNO
Rotate right (2): OPABCDEFGHIJKLMN
Rotate right (3): NOPABCDEFGHIJKLM
Rotate right (4): MNOPABCDEFGHIJKL
 
Insertion sort using `rotate`, step-by-step:
i = 0: 2420597371
i = 1: 2420597371
i = 2: 2240597371
i = 3: 0224597371
i = 4: 0224597371
i = 5: 0224597371
i = 6: 0224579371
i = 7: 0223457971
i = 8: 0223457791
i = 9: 0122345779
Sorted!

[编辑] 另请参阅

复制并旋转元素范围
(niebloid)[编辑]
反转范围内元素的顺序
(niebloid)[编辑]
旋转范围内元素的顺序
(函数模板) [编辑]