std::ranges::contains, std::ranges::contains_subrange
定义于头文件 <algorithm> |
||
调用签名 |
||
(1) | ||
template< std::input_iterator I, std::sentinel_for<I> S, class T, |
(自 C++23 起) (C++26 前) |
|
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(自 C++26 起) | |
(2) | ||
template< ranges::input_range R, class T, |
(自 C++23 起) (C++26 前) |
|
template< ranges::input_range R, class Proj = std::identity, |
(自 C++26 起) | |
template< std::forward_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, |
(3) | (自 C++23 起) |
template< ranges::forward_range R1, ranges::forward_range R2, class Pred = ranges::equal_to, |
(4) | (自 C++23 起) |
此页面上描述的类似函数的实体是算法函数对象(非正式地称为 niebloids),即
目录 |
[编辑] 参数
first, last | - | 定义要检查的元素的范围的迭代器-哨兵对 |
r | - | 要检查的元素的范围 |
value | - | 用于与元素比较的值 |
pred | - | 应用于投影元素的谓词 |
proj | - | 应用于元素的投影 |
[编辑] 返回值
[编辑] 复杂度
最多 last - first 次谓词和投影的应用。
[编辑] 注解
直到 C++20,我们都必须写 std::ranges::find(r, value) != std::ranges::end(r) 来确定单个值是否在范围内部。并且为了检查范围是否包含感兴趣的子范围,我们使用 not std::ranges::search(haystack, needle).empty()。虽然这是准确的,但并不一定方便,并且几乎没有表达意图(尤其是在后一种情况下)。能够说 std::ranges::contains(r, value) 解决了这两个问题。
ranges::contains_subrange
,与 ranges::search 相同,但与 std::search 相比,不提供对 Searchers(例如 Boyer-Moore)的访问。
特性测试 宏 | 值 | Std | 特性 |
---|---|---|---|
__cpp_lib_ranges_contains |
202207L |
(C++23) | std::ranges::contains 和 ranges::contains_subrange |
__cpp_lib_algorithm_default_value_type |
202403 |
(C++26) | 列表初始化 用于算法 (1,2) |
[编辑] 可能的实现
contains (1,2) |
---|
struct __contains_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*> constexpr bool operator()(I first, S last, const T& value, Proj proj = {}) const { return ranges::find(std::move(first), last, value, proj) != last; } template<ranges::input_range R, class Proj = std::identity, class T = std::projected_value_t<ranges::iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr bool operator()(R&& r, const T& value, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(value), proj); } }; inline constexpr __contains_fn contains {}; |
contains_subrange (3,4) |
struct __contains_subrange_fn { template<std::forward_iterator I1, std::sentinel_for<I1> S1, std::forward_iterator I2, std::sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (first2 == last2) || !ranges::search(first1, last1, first2, last2, pred, proj1, proj2).empty(); } template<ranges::forward_range R1, ranges::forward_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (*this)(ranges::begin(r1), ranges::end(r1), ranges::begin(r2), ranges::end(r2), std::move(pred), std::move(proj1), std::move(proj2)); } }; inline constexpr __contains_subrange_fn contains_subrange {}; |
[编辑] 示例
#include <algorithm> #include <array> #include <complex> namespace ranges = std::ranges; int main() { constexpr auto haystack = std::array{3, 1, 4, 1, 5}; constexpr auto needle = std::array{1, 4, 1}; constexpr auto bodkin = std::array{2, 5, 2}; static_assert( ranges::contains(haystack, 4) && !ranges::contains(haystack, 6) && ranges::contains_subrange(haystack, needle) && !ranges::contains_subrange(haystack, bodkin) ); constexpr std::array<std::complex<double>, 3> nums{{{1, 2}, {3, 4}, {5, 6}}}; #ifdef __cpp_lib_algorithm_default_value_type static_assert(ranges::contains(nums, {3, 4})); #else static_assert(ranges::contains(nums, std::complex<double>{3, 4})); #endif }
[编辑] 参见
(C++20)(C++20)(C++20) |
查找满足特定条件的第一个元素 (算法函数对象) |
(C++20) |
搜索元素范围的首次出现 (算法函数对象) |
(C++20) |
确定元素是否存在于部分排序的范围中 (算法函数对象) |
(C++20) |
如果一个序列是另一个序列的子序列,则返回 true (算法函数对象) |
(C++20)(C++20)(C++20) |
检查谓词对于范围中所有、任何或没有元素是否为 true (算法函数对象) |