命名空间
变体
操作

log1p, log1pf, log1pl

来自 cppreference.cn
< C‎ | 数值‎ | 数学
 
 
 
常用数学函数
函数
基本操作
(C99)
(C99)
(C99)
(C99)(C99)(C99)(C23)
最大值/最小值操作
(C99)
(C99)
指数函数
(C23)
(C99)
(C99)
(C23)
(C23)

(C99)
log1plogp1
(C99)(C23)
(C23)
(C23)
幂函数
(C99)
(C23)
(C23)

(C99)
(C23)
(C23)
三角函数和双曲函数
(C23)
(C23)
(C23)
(C23)
(C99)
(C99)
(C99)
最近整数浮点
(C99)(C99)(C99)
(C99)

(C99)(C99)(C99)
(C23)(C23)(C23)(C23)
浮点操作
(C99)(C99)
(C99)(C23)
(C99)
窄化操作
(C23)
(C23)
(C23)
(C23)
(C23)
(C23)
量子和量子指数
十进制重新编码函数
总顺序和有效载荷函数
分类
(C99)
(C99)
(C99)
(C23)
误差和伽玛函数
(C99)
(C99)
(C99)
(C99)
类型
宏常量
特殊浮点值
(C99)(C23)
参数和返回值
错误处理
快速操作指示符
 
在头文件 <math.h> 中定义
float       log1pf( float arg );
(1) (自 C99 起)
double      log1p( double arg );
(2) (自 C99 起)
long double log1pl( long double arg );
(3) (自 C99 起)
在头文件 <tgmath.h> 中定义
#define log1p( arg )
(4) (自 C99 起)
1-3) 计算 1 + arg 的自然对数(底数为 e)。如果 arg 接近于零,则此函数比表达式 log(1 + arg) 更精确。
4) 类型泛型宏:如果 arg 具有 long double 类型,则调用 log1pl。否则,如果 arg 具有整数类型或 double 类型,则调用 log1p。否则,调用 log1pf

目录

[编辑] 参数

arg - 浮点值

[编辑] 返回值

如果没有错误发生,则返回 ln(1 + arg)

如果发生域错误,则返回实现定义的值(在支持的情况下为 NaN)。

如果发生极点错误,则返回 -HUGE_VAL-HUGE_VALF-HUGE_VALL

如果由于下溢而发生范围错误,则返回正确的结果(四舍五入后)。

[编辑] 错误处理

错误报告按照 math_errhandling 中的规定进行。

如果 arg 小于 -1,则发生域错误。

如果 arg-1,则可能发生极点错误。

如果实现支持 IEEE 浮点算术 (IEC 60559),

  • 如果参数为 ±0,则返回未修改的值。
  • 如果参数为 -1,则返回 -∞ 并引发 FE_DIVBYZERO
  • 如果参数小于 -1,则返回 NaN 并引发 FE_INVALID
  • 如果参数为 +∞,则返回 +∞。
  • 如果参数为 NaN,则返回 NaN。

[编辑] 注意

函数 expm1log1p 对于财务计算很有用,例如,在计算小额日利率时:(1+x)n
-1
可以表示为 expm1(n * log1p(x))。这些函数还简化了编写精确的反双曲函数。

[编辑] 示例

#include <errno.h>
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
// #pragma STDC FENV_ACCESS ON
 
int main(void)
{
    printf("log1p(0) = %f\n", log1p(0));
    printf("Interest earned in 2 days on $100, compounded daily at 1%%\n"
           " on a 30/360 calendar = %f\n",
           100*expm1(2*log1p(0.01/360)));
    printf("log(1+1e-16) = %g, but log1p(1e-16) = %g\n",
           log(1+1e-16), log1p(1e-16));
 
    // special values
    printf("log1p(-0) = %f\n", log1p(-0.0));
    printf("log1p(+Inf) = %f\n", log1p(INFINITY));
 
    // error handling
    errno = 0; feclearexcept(FE_ALL_EXCEPT);
    printf("log1p(-1) = %f\n", log1p(-1));
    if (errno == ERANGE)
        perror("    errno == ERANGE");
    if (fetestexcept(FE_DIVBYZERO))
        puts("    FE_DIVBYZERO raised");
}

可能的输出

log1p(0) = 0.000000
Interest earned in 2 days on $100, compounded daily at 1%
 on a 30/360 calendar = 0.005556
log(1+1e-16) = 0, but log1p(1e-16) = 1e-16
log1p(-0) = -0.000000
log1p(+Inf) = Inf
log1p(-1) = -Inf
    errno == ERANGE: Result too large
    FE_DIVBYZERO raised

[编辑] 参考文献

  • C23 标准 (ISO/IEC 9899:2024)
  • 7.12.6.9 log1p 函数 (p: TBD)
  • 7.25 类型泛型数学 <tgmath.h> (p: TBD)
  • F.10.3.9 log1p 函数 (p: TBD)
  • C17 标准 (ISO/IEC 9899:2018)
  • 7.12.6.9 log1p 函数 (p: TBD)
  • 7.25 类型泛型数学 <tgmath.h> (p: TBD)
  • F.10.3.9 log1p 函数 (p: TBD)
  • C11 标准 (ISO/IEC 9899:2011)
  • 7.12.6.9 log1p 函数 (p: 245)
  • 7.25 类型泛型数学 <tgmath.h> (p: 373-375)
  • F.10.3.9 log1p 函数 (p: 522)
  • C99 标准 (ISO/IEC 9899:1999)
  • 7.12.6.9 log1p 函数 (p: 226)
  • 7.22 类型泛型数学 <tgmath.h> (p: 335-337)
  • F.9.3.9 log1p 函数 (p: 459)

[编辑] 参见

(C99)(C99)
计算自然对数(底数为 e)(ln(x)
(函数) [编辑]
计算常用对数(底数为 10)(log10(x)
(函数) [编辑]
(C99)(C99)(C99)
计算以 2 为底的对数(log2(x)
(函数) [编辑]
(C99)(C99)(C99)
计算 e 的给定次幂减 1(ex-1
(函数) [编辑]
C++ 文档 关于 log1p