Explicit (full) template specialization
Allows customizing the template code for a given set of template arguments.
Contents |
[edit] Syntax
template <> declaration
|
|||||||||
Any of the following can be fully specialized:
- function template
- class template
- variable template(since C++14)
- member function of a class template
- static data member of a class template
- member class of a class template
- member enumeration of a class template
- member class template of a class or class template
- member function template of a class or class template
- member variable template of a class or class template(since C++14)
For example,
#include <type_traits> template<typename T> // primary template struct is_void : std::false_type {}; template<> // explicit specialization for T = void struct is_void<void> : std::true_type {}; int main() { static_assert(is_void<char>::value == false, "for any type T other than void, the class is derived from false_type"); static_assert(is_void<void>::value == true, "but when T is void, the class is derived from true_type"); }
[edit] In detail
Explicit specialization may be declared in any scope where its primary template may be defined (which may be different from the scope where the primary template is defined; such as with out-of-class specialization of a member template). Explicit specialization has to appear after the non-specialized template declaration.
namespace N { template<class T> // primary template class X { /*...*/ }; template<> // specialization in same namespace class X<int> { /*...*/ }; template<class T> // primary template class Y { /*...*/ }; template<> // forward declare specialization for double class Y<double>; } template<> // OK: specialization in same namespace class N::Y<double> { /*...*/ };
Specialization must be declared before the first use that would cause implicit instantiation, in every translation unit where such use occurs:
class String {}; template<class T> class Array { /*...*/ }; template<class T> // primary template void sort(Array<T>& v) { /*...*/ } void f(Array<String>& v) { sort(v); // implicitly instantiates sort(Array<String>&), } // using the primary template for sort() template<> // ERROR: explicit specialization of sort(Array<String>) void sort<String>(Array<String>& v); // after implicit instantiation
A template specialization that was declared but not defined can be used just like any other incomplete type (e.g. pointers and references to it may be used):
template<class T> // primary template class X; template<> // specialization (declared, not defined) class X<int>; X<int>* p; // OK: pointer to incomplete type X<int> x; // error: object of incomplete type
Whether an explicit specialization of a function or variable(since C++14) template is inline
/constexpr
(since C++11)/constinit
/consteval
(since C++20) is determined by the explicit specialization itself, regardless of whether the primary template is declared with that specifier. Similarly, attributes appearing in the declaration of a template have no effect on an explicit specialization of that template:(since C++11)
template<class T> void f(T) { /* ... */ } template<> inline void f<>(int) { /* ... */ } // OK, inline template<class T> inline T g(T) { /* ... */ } template<> int g<>(int) { /* ... */ } // OK, not inline template<typename> [[noreturn]] void h([[maybe_unused]] int i); template<> void h<int>(int i) { // [[noreturn]] has no effect, but [[maybe_unused]] has }
[edit] Explicit specializations of function templates
When specializing a function template, its template arguments can be omitted if template argument deduction can provide them from the function arguments:
template<class T> class Array { /*...*/ }; template<class T> // primary template void sort(Array<T>& v); template<> // specialization for T = int void sort(Array<int>&); // no need to write // template<> void sort<int>(Array<int>&);
A function with the same name and the same argument list as a specialization is not a specialization (see template overloading in function template).
Default function arguments cannot be specified in explicit specializations of function templates, member function templates, and member functions of class templates when the class is implicitly instantiated.
An explicit specialization cannot be a friend declaration.
This section is incomplete Reason: review the exception specification requirement across different C++ versions |
[edit] Members of specializations
When defining a member of an explicitly specialized class template outside the body of the class, the syntax template<> is not used, except if it's a member of an explicitly specialized member class template, which is specialized as a class template, because otherwise, the syntax would require such definition to begin with template<parameters> required by the nested template
template<typename T> struct A { struct B {}; // member class template<class U> // member class template struct C {}; }; template<> // specialization struct A<int> { void f(int); // member function of a specialization }; // template<> not used for a member of a specialization void A<int>::f(int) { /* ... */ } template<> // specialization of a member class struct A<char>::B { void f(); }; // template<> not used for a member of a specialized member class either void A<char>::B::f() { /* ... */ } template<> // specialization of a member class template template<class U> struct A<char>::C { void f(); }; // template<> is used when defining a member of an explicitly // specialized member class template specialized as a class template template<> template<class U> void A<char>::C<U>::f() { /* ... */ }
An explicit specialization of a static data member of a template is a definition if the declaration includes an initializer; otherwise, it is a declaration. These definitions must use braces for default initialization:
template<> X Q<int>::x; // declaration of a static member template<> X Q<int>::x (); // error: function declaration template<> X Q<int>::x {}; // definition of a default-initialized static member
A member or a member template of a class template may be explicitly specialized for a given implicit instantiation of the class template, even if the member or member template is defined in the class template definition.
template<typename T> struct A { void f(T); // member, declared in the primary template void h(T) {} // member, defined in the primary template template<class X1> // member template void g1(T, X1); template<class X2> // member template void g2(T, X2); }; // specialization of a member template<> void A<int>::f(int); // member specialization OK even if defined in-class template<> void A<int>::h(int) {} // out of class member template definition template<class T> template<class X1> void A<T>::g1(T, X1) {} // member template specialization template<> template<class X1> void A<int>::g1(int, X1); // member template specialization template<> template<> void A<int>::g2<char>(int, char); // for X2 = char // same, using template argument deduction (X1 = char) template<> template<> void A<int>::g1(int, char);
A member or a member template may be nested within many enclosing class templates. In an explicit specialization for such a member, there's a template<> for every enclosing class template that is explicitly specialized.
template<class T1> struct A { template<class T2> struct B { template<class T3> void mf(); }; }; template<> struct A<int>; template<> template<> struct A<char>::B<double>; template<> template<> template<> void A<char>::B<char>::mf<double>();
In such a nested declaration, some of the levels may remain unspecialized (except that it can't specialize a class member template in namespace scope if its enclosing class is unspecialized). For each of those levels, the declaration needs template<arguments>, because such specializations are themselves templates:
template<class T1> class A { template<class T2> class B { template<class T3> // member template void mf1(T3); void mf2(); // non-template member }; }; // specialization template<> // for the specialized A template<class X> // for the unspecialized B class A<int>::B { template<class T> void mf1(T); }; // specialization template<> // for the specialized A template<> // for the specialized B template<class T> // for the unspecialized mf1 void A<int>::B<double>::mf1(T t) {} // ERROR: B<double> is specialized and is a member template, so its enclosing A // must be specialized also template<class Y> template<> void A<Y>::B<double>::mf2() {}
[edit] Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
CWG 531 | C++98 | the syntax of defining members of explicit specializations in namespace scope was not specified |
specified |
CWG 727 | C++98 | partial and full specializations not allowed in class scope |
allowed in any scope |
CWG 730 | C++98 | member templates of non-template classes could not be fully specialized |
allowed |
CWG 2478 | C++20 | it was unclear whether the constinit and consteval of the primary template are carried over into its explicit specializations |
not carried over |
CWG 2604 | C++11 | it was unclear whether the attributes of the primary template are carried over into its explicit specializations |
not carried over |